Advertisements
Advertisements
प्रश्न
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
उत्तर
`cos63^circ sec(90^circ - θ) = 1`
`cos 63^circ cosecθ = 1`
⇒ `cos63^circ = sinθ`
⇒ `cos 63^circ = cos(90^circ - θ)`
⇒ `63^circ = 90^circ - θ`
⇒ `θ = 27^circ`
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
What is the value of (1 + cot2 θ) sin2 θ?
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove that `sec"A"/(tan "A" + cot "A")` = sin A