Advertisements
Advertisements
प्रश्न
` tan^2 theta - 1/( cos^2 theta )=-1`
उत्तर
LHS= `tan^2 theta - 1/(cos^2 theta)`
=` (sin^2 theta )/( cos^2 theta) - 1/(cos^2 theta)`
=`(sin ^2 theta-1)/(cos^2 theta)`
=` (-cos^2 theta )/(cos^2 theta)`
= -1
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Write the value of cos1° cos 2°........cos180° .
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
If 2sin2β − cos2β = 2, then β is ______.