Advertisements
Advertisements
प्रश्न
` tan^2 theta - 1/( cos^2 theta )=-1`
उत्तर
LHS= `tan^2 theta - 1/(cos^2 theta)`
=` (sin^2 theta )/( cos^2 theta) - 1/(cos^2 theta)`
=`(sin ^2 theta-1)/(cos^2 theta)`
=` (-cos^2 theta )/(cos^2 theta)`
= -1
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
The value of sin2 29° + sin2 61° is
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Choose the correct alternative:
1 + cot2θ = ?
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.