मराठी

The Value of Sin2 29° + Sin2 61° is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of sin2 29° + sin2 61° is

पर्याय

  • 1

  • 0

  •  2 sin2 29°

  • 2 cos2 61° 

     

MCQ

उत्तर

The given expression is `sin^29°+sin^2 61°`

`sin^2 29°+sin^2 61°`. 

=` sin^2 29°+(sin 61°)^2` 

`= sin^2 29°+{sin(90°-29°)}^2`

`=sin^2 29°+(cos 29°)^2` 

`= sin^2 29°+cos^2°29°` 

`= 1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 18 | पृष्ठ ५७

संबंधित प्रश्‍न

If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


9 sec2 A − 9 tan2 A = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×