Advertisements
Advertisements
प्रश्न
The value of sin2 29° + sin2 61° is
पर्याय
1
0
2 sin2 29°
2 cos2 61°
उत्तर
The given expression is `sin^29°+sin^2 61°`
`sin^2 29°+sin^2 61°`.
=` sin^2 29°+(sin 61°)^2`
`= sin^2 29°+{sin(90°-29°)}^2`
`=sin^2 29°+(cos 29°)^2`
`= sin^2 29°+cos^2°29°`
`= 1`
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
9 sec2 A − 9 tan2 A = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
tan θ × `sqrt(1 - sin^2 θ)` is equal to: