Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
उत्तर
LHS = `(cosecA - sinA)(secA - cosA)(tanA + cotA)`
= `(1/sinA -sinA)(1/cosA - cosA)(tanA + 1/tanA)`
= `((1-sin^2A)/sinA)((1 - cos^2A)/cosA)(sinA/cosA + cosA/sinA)`
= `(cos^2A/sinA)(sin^2A/cosA)((sin^2A + cos^2A)/(sinA.cosA))`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
(sec θ + tan θ) . (sec θ – tan θ) = ?
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1