Advertisements
Advertisements
प्रश्न
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
उत्तर
L.H.S = sin2A . tan A + cos2A . cot A + 2 sin A . cos A
= `sin^2"A"* (sin "A")/(cos "A") + cos^2"A"* (cos"A")/(sin"A") + 2sin"A" *cos"A"`
= `(sin^3"A")/"cosA" + (cos^3"A")/"sinA" + 2sin"A"*cos"A"`
= `(sin^4"A" + cos^4"A" + 2sin^2"A"cos^2"A")/(sin"A"cos"A")`
= `(sin^2"A" + cos^2"A")^2/(sin"A"cos"A")` .....[∵ a2 + b2 + 2ab = (a + b)2]
= `1^2/(sin"A"cos"A")` ......[∵ sin2A + cos2A = 1]
= `1/(sin"A"cos"A")`
= `(sin^2"A"+ cos^2"A")/(sin"A"cos"A")` ......[∵ 1 = sin2A + cos2A]
= `(sin^2"A")/(sin"A"cos"A") + (cos^2"A")/(sin"A"cos"A")`
= `"sin A"/"cos A" + "cos A"/"sin A"`
= tan A + cot A
= R.H.S
∴ sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
` tan^2 theta - 1/( cos^2 theta )=-1`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ