मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Prove that sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A

बेरीज

उत्तर

L.H.S = sin2A . tan A + cos2A . cot A + 2 sin A . cos A

= `sin^2"A"* (sin "A")/(cos "A")  + cos^2"A"* (cos"A")/(sin"A") + 2sin"A" *cos"A"`

= `(sin^3"A")/"cosA" + (cos^3"A")/"sinA" + 2sin"A"*cos"A"`

= `(sin^4"A" + cos^4"A" + 2sin^2"A"cos^2"A")/(sin"A"cos"A")`

= `(sin^2"A" + cos^2"A")^2/(sin"A"cos"A")` .....[∵ a2 + b2 + 2ab = (a + b)2]

= `1^2/(sin"A"cos"A")`    ......[∵ sin2A + cos2A = 1]

=  `1/(sin"A"cos"A")`  

= `(sin^2"A"+ cos^2"A")/(sin"A"cos"A")`  ......[∵ 1 = sin2A + cos2A]

= `(sin^2"A")/(sin"A"cos"A") + (cos^2"A")/(sin"A"cos"A")`

= `"sin A"/"cos A" + "cos A"/"sin A"`

= tan A + cot A

= R.H.S

∴ sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.4

संबंधित प्रश्‍न

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`(1 + cos A)/sin^2 A = 1/(1 - cos A)`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


` tan^2 theta - 1/( cos^2 theta )=-1`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×