Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
उत्तर
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
LHS = `(cotA + cosecA - 1)/(cotA - cosecA + 1)`
we know that , cosec2A - cot2A = 1
substituting this in the numerator
`(cosecA + cotA - (cosec^2A - cot^2A))/(cotA - cosecA + 1)` .....(x²-y²= (x+y)(x-y))
`(cosecA + cotA - (cosecA + cotA)(cosecA - cotA))/(cotA - cosecA + 1)`
taking common
`((cosec A + cot A)(1-cosec A + cot A) )/ (cot A - cosec A + 1)`
cancelling like terms in numerator and denominator
we are left with cosec A + cot A
`= 1/sin A + cos A/sin A`
`= (1+cos A) / sin A`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`