Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
उत्तर
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
LHS = `(cotA + cosecA - 1)/(cotA - cosecA + 1)`
we know that , cosec2A - cot2A = 1
substituting this in the numerator
`(cosecA + cotA - (cosec^2A - cot^2A))/(cotA - cosecA + 1)` .....(x²-y²= (x+y)(x-y))
`(cosecA + cotA - (cosecA + cotA)(cosecA - cotA))/(cotA - cosecA + 1)`
taking common
`((cosec A + cot A)(1-cosec A + cot A) )/ (cot A - cosec A + 1)`
cancelling like terms in numerator and denominator
we are left with cosec A + cot A
`= 1/sin A + cos A/sin A`
`= (1+cos A) / sin A`
= RHS
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ