Advertisements
Advertisements
प्रश्न
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ
उत्तर
LHS = (sin θ + cos θ)(cosec θ – sec θ)
= `(sin θ + cos θ)(1/sin θ - 1/cos θ)`
= `(sin θ + cos θ)((cos θ - sin θ)/(sin θ * cos θ))`
= `(cos^2θ - sin^2θ)/(sinθ * cosθ)`
= `(1 - 2sin^2θ)/(sinθ*cosθ)`
= `1/(sinθ * cosθ) - (2 sin^2θ)/(sinθ * cosθ)`
= cosec θ · sec θ – 2 tan θ
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Choose the correct alternative:
1 + tan2 θ = ?
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1