Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
उत्तर
L.H.S. = `(sec A - 1)/(sec A + 1)`
= `(1/(cosA) - 1/1)/(1/(cosA) + 1/1`
= `((1 - cos A)/cos A)/((1 + cos A)/cos A)`
= `(1 - cos A)/cos A xx cos A/(1 + cos A)`
= `(1 - cosA)/(1 + cosA)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Prove that sec2θ − cos2θ = tan2θ + sin2θ