हिंदी

Prove the Following Trigonometric Identities. (Cos Theta)/(Cosec Theta + 1) + (Cos Theta)/(Cosec Theta - 1) = 2 Tan Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`

उत्तर

In the given question, we need to prove `(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`

Using the identity `a^2 - b^2  = (a + b)(a - b)`

`cos theta/((cosec theta + 1)) + cos theta/(cosec theta - 1) = (cos theta(cosec theta - 1)+ cos theta(cosec theta + 1))/(cosec^2 theta - 1)`

`= (cos theta (cosec theta - 1 + cosec theta + 1))/(cosec^2 theta -1)  = (cos theta(2 cosec theta))/cot^2 theta`

`= ((2 cos theta)(1/sin theta))/((cos^2 theta/sin^2 theta))`

`= 2 ((cos theta)/(sin theta))(sin^2 theta/cos^2 theta)`

`= 2 sin theta/cos theta`

`= 2 tan theta`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 52 | पृष्ठ ४५

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


\[\frac{x^2 - 1}{2x}\] is equal to 


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×