Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
उत्तर
In the given question, we need to prove `(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Using the identity `a^2 - b^2 = (a + b)(a - b)`
`cos theta/((cosec theta + 1)) + cos theta/(cosec theta - 1) = (cos theta(cosec theta - 1)+ cos theta(cosec theta + 1))/(cosec^2 theta - 1)`
`= (cos theta (cosec theta - 1 + cosec theta + 1))/(cosec^2 theta -1) = (cos theta(2 cosec theta))/cot^2 theta`
`= ((2 cos theta)(1/sin theta))/((cos^2 theta/sin^2 theta))`
`= 2 ((cos theta)/(sin theta))(sin^2 theta/cos^2 theta)`
`= 2 sin theta/cos theta`
`= 2 tan theta`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
\[\frac{x^2 - 1}{2x}\] is equal to
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.