Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
उत्तर
In the given question, we need to prove `1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Using `cot theta = cos theta/sin theta` and `cosec theta = 1/sin theta` We get
`1 + cot^2 theta/(1 + cosec theta) = (1 = cosec theta + cot^2 theta)/(1 + cosec theta)`
`= ((1 + 1/sin theta + cos^2 theta/sin^2 theta))/((1 + 1/sin theta))`
` = (((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta))/(((sin theta + 1)/sin theta))`
Further, using the property `sin^2 theta + cos^2 theta = 1`
We get
`((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta)/((sin theta + 1)/sin theta) = ((1 + sin theta)/sin^2 theta)/((sin theta + 1)/sin theta)`
`= (1 + sin theta/sin^2 theta)((sin theta)/(1 + sin theta))`
`= 1/sin theta`
`= cosec theta`
Hence proved.
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.