हिंदी

Prove the Following Trigonometric Identities. 1 + Cot 2 Theta/(1 + Cosec Theta) = Cosec Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`

उत्तर

In the given question, we need to prove `1 + cot^2 theta/(1 + cosec theta) = cosec theta`

Using `cot theta = cos theta/sin theta` and `cosec theta = 1/sin theta` We get

`1 + cot^2 theta/(1 +  cosec theta) = (1 = cosec theta +  cot^2 theta)/(1 + cosec theta)`

`= ((1 + 1/sin theta + cos^2 theta/sin^2 theta))/((1 + 1/sin theta))`

` = (((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta))/(((sin theta + 1)/sin theta))`

Further, using the property `sin^2 theta + cos^2 theta = 1`

We get

`((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta)/((sin theta + 1)/sin theta) = ((1 + sin theta)/sin^2 theta)/((sin theta + 1)/sin theta)`

`= (1 + sin theta/sin^2 theta)((sin theta)/(1 + sin theta))`

`= 1/sin theta`

`= cosec theta`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 51 | पृष्ठ ४५
आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 51 | पृष्ठ ४५

संबंधित प्रश्न

If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


If `sec theta + tan theta = p,` prove that

(i)`sec theta = 1/2 ( p+1/p)   (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×