Advertisements
Advertisements
प्रश्न
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
उत्तर
LHS = `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1)`
= `((cot "A" + "cosec A") - ("cosec"^2 "A" - cot^2 "A"))/(cot "A" - "cosec A" + 1)`
= `((cot "A" + "cosec A")("cosec A" + cot "A")("cosec A" - cot "A"))/(cot "A" - "cosec A" + 1)`
= `((cot "A" + "cosec A") [1 - "cosec A" - cot "A"])/(cot"A"-"cosec A"+1)`
= `((cot "A" + "cosec A") (1-"cosec A"+cot"A"))/(1-"cosec A"+cot"A")`
= cot A + cosec A
= `cos"A"/sin"A"+1/sin"A"=(cos"A"+1)/sin"A"`
= `(1+cos"A")/sin"A"`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
sec4 A − sec2 A is equal to
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)