हिंदी

Find the Value of `(Cos 38° Cosec 52°)/(Tan 18° Tan 35° Tan 60° Tan 72° Tan 55°)` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`

उत्तर

`(cos 38°   cosec 52°)/(tan 18°   tan 35°   tan 60°   tan 72°  tan 55°)`

`= ( cos 38 °    sec (90°-52°))/( cot (90° -18° ) cot (90° -35° ) tan 60° tan 72° tan 55°)`

 =` (cos 38°  sec 38°)/( cot 72° cot 55°  tan 60°   tan 72°  tan 55°)`

=`(cos 38° xx1/(cos 38°))/(1/(tan 72°) xx1/( tan 55°) xx sqrt(3 ) xx tan 72° xx tan 55°)`

=`1/sqrt(3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 38

संबंधित प्रश्न

Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to 


Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


Prove that:

tan (55° + x) = cot (35° – x)


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that sin6A + cos6A = 1 – 3sin2A . cos2A


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×