Advertisements
Advertisements
प्रश्न
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
उत्तर
`(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
`= ( cos 38 ° sec (90°-52°))/( cot (90° -18° ) cot (90° -35° ) tan 60° tan 72° tan 55°)`
=` (cos 38° sec 38°)/( cot 72° cot 55° tan 60° tan 72° tan 55°)`
=`(cos 38° xx1/(cos 38°))/(1/(tan 72°) xx1/( tan 55°) xx sqrt(3 ) xx tan 72° xx tan 55°)`
=`1/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that:
tan (55° + x) = cot (35° – x)
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.