हिंदी

If `Sin Theta = X , " Write the Value of Cot "Theta .` - Mathematics

Advertisements
Advertisements

प्रश्न

If `sin theta = x , " write the value of cot "theta .`

उत्तर

`cot theta = cos theta / sin theta `

 =` sqrt(1-sin^2 theta)/sin theta`

=`sqrt(1-x^2)/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 39

संबंधित प्रश्न

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


`(1 + cot^2 theta ) sin^2 theta =1`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Define an identity.


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


If sec θ = `25/7`, then find the value of tan θ.


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×