Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
उत्तर १
We need to prove `1/(secA - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Solving the L.H.S, we get
`1/(sec A - 1)+ 1/(sec A + 1) = (sec A + 1 + sec A - 1)/((sec A - 1)(sec A + 1))`
`= (2 sec A)/(sec^2 A - 1)`
Further using the property ` 1 + tan^2 theta = sec^2 theta` we get
So
`(2 sec A)/(sec^2 A - 1) = (2 sec A)/(tan^2 A)`
`= (2(1/cos A))/(sin^2 A/cos^2 A)`
`= 2 1/cos A xx cos^2 A/sin^2 A`
`= 2(cos A/sin A) xx 1/sin A`
= 2cosec A cot A
उत्तर २
LHS = `1/(sec A - 1) + 1/(sec A + 1)`
= `(sec A + 1 + sec A - 1)/(sec^2 A - 1 )`
= `(2sec A)/(tan^2 A)`
= `2 . 1/(cos A) xx 1/((sin^2 A)/(cos^2 A))`
= `2. 1/(cos A) xx (cos^2 A)/(sin^2 A)`
= 2 cosec A. cot A
= RHS
Hence proved.
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
If 1 – cos2θ = `1/4`, then θ = ?
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.