हिंदी

Prove the Following Trigonometric Identities. 1/(Sec a - 1) + 1/(Sec a + 1) = 2 Cosec a Cot a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`

योग

उत्तर १

We need to prove  `1/(secA - 1) + 1/(sec A + 1) = 2 cosec A cot A`

Solving the L.H.S, we get

`1/(sec A  - 1)+ 1/(sec A + 1)  = (sec A + 1 + sec A - 1)/((sec A - 1)(sec A + 1))`

`= (2 sec A)/(sec^2 A - 1)`

Further using the property ` 1 + tan^2 theta = sec^2 theta` we get

So

`(2 sec A)/(sec^2 A - 1) = (2 sec A)/(tan^2 A)`

`= (2(1/cos A))/(sin^2 A/cos^2 A)`

`= 2 1/cos A xx cos^2 A/sin^2 A`

`= 2(cos A/sin A) xx 1/sin A`

= 2cosec A cot A

shaalaa.com

उत्तर २

LHS = `1/(sec A - 1) + 1/(sec A + 1)`

= `(sec A + 1 + sec A - 1)/(sec^2 A - 1 )`

= `(2sec A)/(tan^2 A)`

= `2 . 1/(cos A) xx 1/((sin^2 A)/(cos^2 A))`

= `2. 1/(cos A) xx (cos^2 A)/(sin^2 A)`

= 2 cosec A. cot A
= RHS
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 18 Trigonometry
Exercise 2 | Q 14
आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 41 | पृष्ठ ४५

संबंधित प्रश्न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


If 1 – cos2θ = `1/4`, then θ = ?


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×