Advertisements
Advertisements
प्रश्न
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
उत्तर
L.H.S. = `secA/(secA + 1) + secA/(secA - 1)`
= `(sec^2A - secA + sec^2A + secA)/(sec^2A - 1`
= `(2sec^2A)/tan^2A` ...(∵ sec2 A – 1 = tan2 A)
= `(2/cos^2A)/(sin^2A/cos^2A)`
= `2/sin^2A`
= 2 cosec2 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ