Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
उत्तर
R.H.S. = `(1 - sinA)/(1 + sinA)`
= `(1 - 1/(cosecA))/(1 + 1/(cosecA))`
= `(cosecA - 1)/(cosecA + 1)`
= `(cosecA - 1)/(cosecA + 1) xx (cosecA + 1)/(cosecA + 1)`
= `(cosec^2A - 1)/(cosecA + 1)^2 = cot^2A/(cosecA + 1)^2` ...(∵ cosec2 A – 1 = cot2 A)
= L.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
If tanθ `= 3/4` then find the value of secθ.
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ