Advertisements
Advertisements
प्रश्न
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
उत्तर
LHS: `((sin^3θ)/(cos^3θ))/((1 + sin^2θ)/(cos^2θ)) + ((cos^3θ)/(sin^3θ))/((1 + cos^2θ)/(sin^2θ))`
= `((sin^3θ)/(cos^3θ))/(((cos^2θ + sin^2θ))/cos^2θ) + ((cos^3θ)/(sin^3θ))/(((sin^2θ + cos^2θ))/sin^2θ)`
= `sin^3θ/cosθ + cos^3θ/sinθ`
= `(sin^4θ + cos^4θ)/(cosθsinθ)`
= `((sin^2θ + cos^2θ)^2 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`
= `(1 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`
= `1/(cos θ sinθ) - (2 sin^2θcos^2θ)/(cosθ sinθ)`
= secθ cosec θ – 2 sinθ cosθ
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of cos1° cos 2°........cos180° .
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.