हिंदी

If θ3tanθ = 1, then find the value of sin2θ – cos2θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.

योग

उत्तर

Given that,

`sqrt(3) tan θ` = 1

⇒ tan θ = `1/sqrt(3)` = tan 30°

⇒ θ = 30°

Now, sin2θ – cos2θ = sin230° – cos230°

= `(1/2)^2 - (sqrt(3)/2)^2`

= `1/4 - 3/4`

= `(1 - 3)/4`

= `-2/4`

= `-1/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 9 | पृष्ठ ९५

संबंधित प्रश्न

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


(secA + tanA) (1 − sinA) = ______.


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove the following identities:

`1 - cos^2A/(1 + sinA) = sinA`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove that:

2 sin2 A + cos4 A = 1 + sin4


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


The value of sin2 29° + sin2 61° is


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


sec θ when expressed in term of cot θ, is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×