Advertisements
Advertisements
प्रश्न
sec θ when expressed in term of cot θ, is equal to ______.
विकल्प
`(1 + cot^2 θ)/cotθ`
`sqrt(1 + cot^2 θ)`
`sqrt(1 + cot^2 θ)/cotθ`
`sqrt(1 - cot^2 θ)/cotθ`
उत्तर
sec θ when expressed in term of cot θ, is equal to `underlinebb(sqrt(1 + cot^2 θ)/cotθ)`.
Explanation:
As we know that,
sec2 θ = 1 + tan2 θ
and cot θ = `1/tanθ`
`\implies` tan θ = `1/cotθ`
∴ sec2 θ = `1 + (1/cotθ)^2`
= `1 + 1/(cot^2 θ)`
`\implies` sec2 θ = `(cot^2 θ + 1)/(cot^2 θ)`
`\implies` sec θ = `sqrt(1 + cot^2 θ)/cotθ`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`(1 + cot^2 theta ) sin^2 theta =1`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
If `sec theta + tan theta = x," find the value of " sec theta`
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
sin2θ + sin2(90 – θ) = ?
Given that sin θ = `a/b`, then cos θ is equal to ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`