हिंदी

Sec θ when expressed in term of cot θ, is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

sec θ when expressed in term of cot θ, is equal to ______.

विकल्प

  • `(1 + cot^2 θ)/cotθ`

  • `sqrt(1 + cot^2 θ)`

  • `sqrt(1 + cot^2 θ)/cotθ`

  • `sqrt(1 - cot^2 θ)/cotθ`

MCQ
रिक्त स्थान भरें

उत्तर

sec θ when expressed in term of cot θ, is equal to `underlinebb(sqrt(1 + cot^2 θ)/cotθ)`.

Explanation:

As we know that,

sec2 θ = 1 + tan2 θ

and cot θ = `1/tanθ`

`\implies` tan θ = `1/cotθ`

∴ sec2 θ = `1 + (1/cotθ)^2`

= `1 + 1/(cot^2 θ)`

`\implies` sec2 θ = `(cot^2 θ + 1)/(cot^2 θ)`

`\implies` sec θ = `sqrt(1 + cot^2 θ)/cotθ`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Standard - Delhi Set 1

संबंधित प्रश्न

Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


`(1 + cot^2 theta ) sin^2 theta =1`


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


If `sec theta + tan theta = x,"  find the value of " sec theta`


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


sin2θ + sin2(90 – θ) = ?


Given that sin θ = `a/b`, then cos θ is equal to ______.


Prove the following identity:

(sin2θ – 1)(tan2θ + 1) + 1 = 0


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×