Advertisements
Advertisements
प्रश्न
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0
उत्तर
L.H.S. = (sin2θ – 1)(tan2θ + 1) + 1
= (– cos2θ) sec2θ + 1
= `- cos^2θ xx 1/(cos^2θ) + 1`
= – 1 + 1
= 0
= R.H.S.
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`