Advertisements
Advertisements
Question
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0
Solution
L.H.S. = (sin2θ – 1)(tan2θ + 1) + 1
= (– cos2θ) sec2θ + 1
= `- cos^2θ xx 1/(cos^2θ) + 1`
= – 1 + 1
= 0
= R.H.S.
Hence Proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
From the figure find the value of sinθ.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identities.
cot θ + tan θ = sec θ cosec θ