English

Prove that Sqrt((1 + Cos Theta)/(1 - Cos Theta)) + Sqrt((1 - Cos Theta)/(1 + Cos Theta)) = 2 Cosec Theta - Mathematics

Advertisements
Advertisements

Question

Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`

Solution

`sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta))`

`= sqrt((1 + cos theta)/(1 - cos theta) xx (1 + cos theta)/(1 + cos theta)) + sqrt((1 -cos theta)/(1 + cos theta) xx (1 - cos theta)/(1 - cos theta))`

`= sqrt((1 + cos theta)^2/(1 - cos^2 theta)) + sqrt((1 - cos theta)^2/(1 - cos^2 theta))`

`= sqrt((1 + cos theta)^2/(sin^2 theta)) + sqrt((1 -cos theta)^2/sin^2 theta)`

`= (1 + cos theta)/sin theta + (1 - cos theta)/sin theta`

`= 2/sin theta = 2cosec theta`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 83.3 | Page 47

RELATED QUESTIONS

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Given that sin θ = `a/b`, then cos θ is equal to ______.


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×