Advertisements
Advertisements
Question
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Solution
`sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta))`
`= sqrt((1 + cos theta)/(1 - cos theta) xx (1 + cos theta)/(1 + cos theta)) + sqrt((1 -cos theta)/(1 + cos theta) xx (1 - cos theta)/(1 - cos theta))`
`= sqrt((1 + cos theta)^2/(1 - cos^2 theta)) + sqrt((1 - cos theta)^2/(1 - cos^2 theta))`
`= sqrt((1 + cos theta)^2/(sin^2 theta)) + sqrt((1 -cos theta)^2/sin^2 theta)`
`= (1 + cos theta)/sin theta + (1 - cos theta)/sin theta`
`= 2/sin theta = 2cosec theta`
APPEARS IN
RELATED QUESTIONS
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Given that sin θ = `a/b`, then cos θ is equal to ______.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`