Advertisements
Advertisements
Question
Given that sin θ = `a/b`, then cos θ is equal to ______.
Options
`b/sqrt(b^2 - a^2)`
`b/a`
`sqrt(b^2 - a^2)/b`
`a/sqrt(b^2 - a^2)`
Solution
Given that sin θ = `a/b`, then cos θ is equal to `underlinebb(sqrt(b^2 - a^2)/b)`.
Explanation:
According to the question,
sin θ = `a/b`
We know,
sin2θ + cos2θ = 1
sin2A = 1 – cos2A
sin A = `sqrt(1 - cos^2A)`
So, cos θ = `sqrt(1 - a^2/b^2)`
= `sqrt((b^2 - a^2)/b^2)`
= `sqrt(b^2 - a^2)/b`
Hence, cos θ = `sqrt(b^2 - a^2)/b`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
sin2θ + sin2(90 – θ) = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
sin(45° + θ) – cos(45° – θ) is equal to ______.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ