English

Given that sin θ = ab, then cos θ is equal to ______. - Mathematics

Advertisements
Advertisements

Question

Given that sin θ = `a/b`, then cos θ is equal to ______.

Options

  • `b/sqrt(b^2 - a^2)`

  • `b/a`

  • `sqrt(b^2 - a^2)/b`

  • `a/sqrt(b^2 - a^2)`

MCQ
Fill in the Blanks

Solution

Given that sin θ = `a/b`, then cos θ is equal to `underlinebb(sqrt(b^2 - a^2)/b)`.

Explanation:

According to the question,

sin θ = `a/b`

We know,

sin2θ + cos2θ = 1

sin2A = 1 – cos2A

sin A = `sqrt(1 - cos^2A)`

So, cos θ = `sqrt(1 - a^2/b^2)`

= `sqrt((b^2 - a^2)/b^2)`

= `sqrt(b^2 - a^2)/b`

Hence, cos θ = `sqrt(b^2 - a^2)/b`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [Page 90]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 4 | Page 90

RELATED QUESTIONS

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


sin2θ + sin2(90 – θ) = ?


(sec θ + tan θ) . (sec θ – tan θ) = ?


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


sin(45° + θ) – cos(45° – θ) is equal to ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×