English

Prove the Following Trigonometric Identities. (1 + Sin Theta)/Cos Theta + Cos Theta/(1 + Sin Theta) = 2 Sec Theta - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`

Sum

Solution 1

We have to prove `(1 + sin theta)/cos theta + cos theta/1+ sin theta - 2 sec theta`

We know that, `sin^2 theta + cos^2 theta = 1`

Multiplying the denominator and numerator of the second term by `(1 - sin theta)` we have

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = (1 = sin theta)/cos theta =  (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`

`= (1 + sin theta)/cos theta =  (cos theta (1 - sin theta))/(1-sin theta)`

`= (1 + sin theta)/cos theta + (cos theta(1 - sin theta))/cos^2 theta`

`= (1 + sin theta)/cos theta + (1 - sin theta)/cos theta`

`= (1 + sin theta +  1 -sin theta)/cos theta`

`= 2/cos theta`

`= 2 sec theta`

shaalaa.com

Solution 2

LHS = `(1 + sin θ)/cos θ + cos θ/(1 + sin θ)`

= `(( 1 + sin θ)^2 + cos^2 θ)/(cos θ( 1 + sin θ))`

= `( 1 + sin^2 θ + 2 sin θ + cos^2 θ)/(cos θ( 1 + sin θ ))`

= `(1 + (sin^2θ + cos^2 θ) + 2 sin θ)/(cos θ(1 + sin θ))`

= `(1 + 1 + 2sin θ)/(cos θ(1 + sin θ))`

= `(2(1 + sin θ))/(cos θ(1 + sin θ))`

= 2 sec θ

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 60.3
RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 26 | Page 44

RELATED QUESTIONS

Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove that:

`cosA/(1 + sinA) = secA - tanA`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


What is the value of 9cot2 θ − 9cosec2 θ? 


9 sec2 A − 9 tan2 A is equal to


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


If sin θ = `1/2`, then find the value of θ. 


Evaluate:

`(tan 65^circ)/(cot 25^circ)`


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Prove the following identities.

sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1


If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1


If tan θ = `13/12`, then cot θ = ?


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×