Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Solution 1
We have to prove `(1 + sin theta)/cos theta + cos theta/1+ sin theta - 2 sec theta`
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying the denominator and numerator of the second term by `(1 - sin theta)` we have
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = (1 = sin theta)/cos theta = (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`
`= (1 + sin theta)/cos theta = (cos theta (1 - sin theta))/(1-sin theta)`
`= (1 + sin theta)/cos theta + (cos theta(1 - sin theta))/cos^2 theta`
`= (1 + sin theta)/cos theta + (1 - sin theta)/cos theta`
`= (1 + sin theta + 1 -sin theta)/cos theta`
`= 2/cos theta`
`= 2 sec theta`
Solution 2
LHS = `(1 + sin θ)/cos θ + cos θ/(1 + sin θ)`
= `(( 1 + sin θ)^2 + cos^2 θ)/(cos θ( 1 + sin θ))`
= `( 1 + sin^2 θ + 2 sin θ + cos^2 θ)/(cos θ( 1 + sin θ ))`
= `(1 + (sin^2θ + cos^2 θ) + 2 sin θ)/(cos θ(1 + sin θ))`
= `(1 + 1 + 2sin θ)/(cos θ(1 + sin θ))`
= `(2(1 + sin θ))/(cos θ(1 + sin θ))`
= 2 sec θ
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
What is the value of 9cot2 θ − 9cosec2 θ?
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
If sin θ = `1/2`, then find the value of θ.
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
If tan θ = `13/12`, then cot θ = ?
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`