Advertisements
Advertisements
Question
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Solution
`cos(2x - 6)= cos^2 30^circ - cos^2 60^circ`
⇒ `cos(2x - 6) = cos^2(90^circ - 60^circ) - cos^2 60^circ`
⇒ `cos(2x - 6) = sin^2 60^circ - cos^2 60^circ`
⇒ `cos(2x - 6) = 1 - 2cos^2 60^circ = 1 - 2(1/2)^2 = 1 - 1/2 = 1/2`
⇒ `cos(2x - 6) = 1/2`
⇒ `cos(2x - 6) = cos60^circ`
⇒ `(2x - 6) = 60^circ`
⇒ `2x = 66^circ`
⇒ `x = 33^circ`
APPEARS IN
RELATED QUESTIONS
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1