Advertisements
Advertisements
प्रश्न
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
उत्तर
`cos(2x - 6)= cos^2 30^circ - cos^2 60^circ`
⇒ `cos(2x - 6) = cos^2(90^circ - 60^circ) - cos^2 60^circ`
⇒ `cos(2x - 6) = sin^2 60^circ - cos^2 60^circ`
⇒ `cos(2x - 6) = 1 - 2cos^2 60^circ = 1 - 2(1/2)^2 = 1 - 1/2 = 1/2`
⇒ `cos(2x - 6) = 1/2`
⇒ `cos(2x - 6) = cos60^circ`
⇒ `(2x - 6) = 60^circ`
⇒ `2x = 66^circ`
⇒ `x = 33^circ`
APPEARS IN
संबंधित प्रश्न
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ