Advertisements
Advertisements
प्रश्न
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
उत्तर
`cosec49°cos41° + (tan31°)/(cot59°)`
⇒ `sec(90^circ - 41^circ)cos41^circ + cot(90^circ - 59^circ)/cot56^circ`
⇒ `sec41^circ cos41^circ + cot59^circ/cot59^circ` = 1+ 1 = 2
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If tan α + cot α = 2, then tan20α + cot20α = ______.
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.