Advertisements
Advertisements
प्रश्न
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
विकल्प
\[\frac{z^2}{c^2}\]
\[1 - \frac{z^2}{c^2}\]
\[\frac{z^2}{c^2} - 1\]
\[1 + \frac{z^2}{c^2}\]
उत्तर
Given:
`x= a secθcosΦ`
`⇒ x/a=secθ cosΦ `
`y=b sec θ sinΦ `
`⇒ y/b=secθ sinΦ `
`z=c tan θ`
`z/c= tan θ`
Now,
`(x/a)^2+(y/b)^2-(z/c)^2=(secθ cosΦ)^2+(secθ sin Φ)^2-(tanθ )^2`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θcos^2 Φ+sec^2θsin^2Φ-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=(sec^2θ cos^2Φ+sec^2θ sin^2 sin^2Φ)-tan^2Φ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ(cos^2Φ+sin^2Φ)-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θ(1)-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=1`
`⇒x^2/a^2+y^2/b^2=1+z^2/c^2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
cosec4θ − cosec2θ = cot4θ + cot2θ
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Choose the correct alternative:
sec 60° = ?