हिंदी

If X = a Sec θ Cos ϕ, Y = B Sec θ Sin ϕ and Z = C Tan θ, Then X 2 a 2 + Y 2 B 2 - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]

विकल्प

  • \[\frac{z^2}{c^2}\]

  • \[1 - \frac{z^2}{c^2}\]

  • \[\frac{z^2}{c^2} - 1\]

  • \[1 + \frac{z^2}{c^2}\]

MCQ

उत्तर

Given: 

`x= a secθcosΦ` 

`⇒ x/a=secθ cosΦ `

`y=b sec θ sinΦ `

`⇒ y/b=secθ sinΦ `

`z=c tan θ`

`z/c= tan θ` 

Now, 

`(x/a)^2+(y/b)^2-(z/c)^2=(secθ cosΦ)^2+(secθ sin Φ)^2-(tanθ )^2` 

`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θcos^2 Φ+sec^2θsin^2Φ-tan^2θ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2=(sec^2θ cos^2Φ+sec^2θ sin^2 sin^2Φ)-tan^2Φ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ(cos^2Φ+sin^2Φ)-tan^2θ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θ(1)-tan^2θ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ-tan^2θ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2=1` 

`⇒x^2/a^2+y^2/b^2=1+z^2/c^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 23 | पृष्ठ ५८

संबंधित प्रश्न

Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


cosec4θ − cosec2θ = cot4θ + cot2θ


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


What is the value of (1 − cos2 θ) cosec2 θ? 


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


Choose the correct alternative:

sec 60° = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×