Advertisements
Advertisements
प्रश्न
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
उत्तर
`sqrt((1 + sinA)/(1 - sinA))`
= `sqrt((1 + sinA)/(1 - sinA) xx (1 - sinA)/(1 - sinA))`
= `sqrt((1 - sin^2A)/(1 - sinA)^2)`
= `sqrt(cos^2A/((1 - sinA)^2)`
= `cosA/(1 - sinA)`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`