Advertisements
Advertisements
प्रश्न
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
उत्तर
`sqrt((1 + sinA)/(1 - sinA))`
= `sqrt((1 + sinA)/(1 - sinA) xx (1 - sinA)/(1 - sinA))`
= `sqrt((1 - sin^2A)/(1 - sinA)^2)`
= `sqrt(cos^2A/((1 - sinA)^2)`
= `cosA/(1 - sinA)`
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
sec4 A − sec2 A is equal to
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.