Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
उत्तर
R.H.S. = `tan^2A/(secA - 1)^2`
= `(sec^2A - 1)/(secA - 1)^2` ...[sec2θ – tan2θ = 1 sec2θ – 1 = tan2θ]
= `((secA + 1)(secA - 1))/(secA - 1)^2`
= `(secA + 1)/(secA - 1)`
= `(1/(cosA) + 1)/(1/cosA - 1)`
= `((1 + cosA)/cosA)/((1 - cosA)/(cosA))`
= `(1 + cosA)/(1 - cosA)`
R.H.S. = L.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Choose the correct alternative:
cos 45° = ?
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.