Advertisements
Advertisements
प्रश्न
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
उत्तर
L.H.S = sec2A – cosec2A
= `1/(cos^2"A") - 1/(sin^2"A")`
= `(sin^2"A" - cos^2"A")/(cos^2"A"*sin^2"A")`
= `(sin^2"A" - (1 - sin^2"A"))/(sin^2"A"*cos^2"A")` .....`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - sin^2"A" = cos^2"A")]`
= `(sin^2"A" - 1 + sin^2"A")/(sin^2"A"*cos^2"A")`
= `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
= R.H.S
∴ sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
`(sec^2 theta-1) cot ^2 theta=1`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
What is the value of (1 − cos2 θ) cosec2 θ?
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If sin A = `1/2`, then the value of sec A is ______.