मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Prove that sec2A – cosec2A = AAA2sin2A-1sin2A⋅cos2A - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`

बेरीज

उत्तर

L.H.S = sec2A – cosec2A

= `1/(cos^2"A") - 1/(sin^2"A")`

= `(sin^2"A" - cos^2"A")/(cos^2"A"*sin^2"A")`

= `(sin^2"A" - (1 - sin^2"A"))/(sin^2"A"*cos^2"A")` .....`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - sin^2"A" = cos^2"A")]`

= `(sin^2"A" - 1 + sin^2"A")/(sin^2"A"*cos^2"A")`

= `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`

= R.H.S

∴ sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.4

संबंधित प्रश्‍न

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


`(sec^2 theta-1) cot ^2 theta=1`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


What is the value of (1 − cos2 θ) cosec2 θ? 


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


Prove the following identities.

sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×