Advertisements
Advertisements
प्रश्न
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
उत्तर
`(tan^2 theta - sec^2 theta )/ (cot^2 theta - cosec^2 theta)`
=` (-1)/(-1)`
= 1
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`(sec^2 theta-1) cot ^2 theta=1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that cot2θ – tan2θ = cosec2θ – sec2θ