मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Prove that θcosec θ×1-cos2θ = 1 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1

बेरीज

उत्तर

L.H.S = `"cosec"  θ xx sqrt(1 - cos^2theta)`

= `"cosec"  θ xx sqrt(sin^2theta)`   ......`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`

= cosec θ × sin θ

= 1     ......[∵ sin θ × cosec θ = 1]

= R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.1 (B)

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.


Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


Write the value of cos1° cos 2°........cos180° .


What is the value of (1 − cos2 θ) cosec2 θ? 


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×