Advertisements
Advertisements
प्रश्न
If tan θ = `13/12`, then cot θ = ?
उत्तर
cot θ = `1/tantheta`
= `1/(13/12)`
∴ cot θ = `12/13`
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Find A if tan 2A = cot (A-24°).
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If tan θ × A = sin θ, then A = ?
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ