Advertisements
Advertisements
प्रश्न
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
उत्तर
Here,
x2 = a2 sec2θ + 2ab sec θ.tan θ + b2tan2θ
y2 = a2 tan2θ + 2ab sec θ.tan θ + b2sec2θ
⇒ x2 - y2 = a2 ( sec2θ - tan2θ ) - b2 ( sec2θ - tan2θ )
⇒ x2 - y2 = a2 - b2. ....( ∵ sec2θ - tan2θ = 1)
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ