Advertisements
Advertisements
प्रश्न
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
उत्तर
Given that, tan A = n tan B and sin A = m sin B.
`=> n = tanA/tanB` and `m = sinA/sinB`
∴ `(m^2 - 1)/(n^2 - 1) = ((sinA/sinB)^2 - 1)/((tanA/tanB)^2 - 1)`
= `(sin^2A/sin^2B - 1/1)/(tan^2A/(tan^2B) - 1)`
= `((sin^2A - sin^2B)/sin^2B)/((tan^2A - tan^2B)/tan^2B)`
= `((sin^2A - sin^2B)/tan^2B)/((tan^2A - tan^2B)/sin^2B)`
= `((sin^2A - sin^2B)sin^2B)/((sin^2A/cos^2A-sin^2B/cos^2B)cos^2Bsin^2B)`
= `(sin^2A - sin^2B)/(((sin^2A.cos^2B - sin^2B.cos^2A)/(cos^2A.cos^2B)) cos^2B)`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A.cos^2B - sin^2B.cos^2A)`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A(1 - sin^2B) - sin^2B (1 - sin^2A))`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A - sin^2A.sin^2B - sin^2B + sin^2B.sin^2A)`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A -sin^2B)`
= cos2 A
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Write the value of tan1° tan 2° ........ tan 89° .
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Find the value of ( sin2 33° + sin2 57°).
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A