Advertisements
Advertisements
Question
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Solution
Given that, tan A = n tan B and sin A = m sin B.
`=> n = tanA/tanB` and `m = sinA/sinB`
∴ `(m^2 - 1)/(n^2 - 1) = ((sinA/sinB)^2 - 1)/((tanA/tanB)^2 - 1)`
= `(sin^2A/sin^2B - 1/1)/(tan^2A/(tan^2B) - 1)`
= `((sin^2A - sin^2B)/sin^2B)/((tan^2A - tan^2B)/tan^2B)`
= `((sin^2A - sin^2B)/tan^2B)/((tan^2A - tan^2B)/sin^2B)`
= `((sin^2A - sin^2B)sin^2B)/((sin^2A/cos^2A-sin^2B/cos^2B)cos^2Bsin^2B)`
= `(sin^2A - sin^2B)/(((sin^2A.cos^2B - sin^2B.cos^2A)/(cos^2A.cos^2B)) cos^2B)`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A.cos^2B - sin^2B.cos^2A)`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A(1 - sin^2B) - sin^2B (1 - sin^2A))`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A - sin^2A.sin^2B - sin^2B + sin^2B.sin^2A)`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A -sin^2B)`
= cos2 A
APPEARS IN
RELATED QUESTIONS
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`