English

Write the Value of `(1 + Tan^2 Theta ) Cos^2 Theta`. - Mathematics

Advertisements
Advertisements

Question

Write the value of `(1 + tan^2 theta ) cos^2 theta`. 

Solution

`(1+ tan^2 theta ) cos^2 theta `

    = `sec^2 theta xx 1/ sec^2 theta`

    =1

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 3

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 3 | Q 3

RELATED QUESTIONS

Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×