Advertisements
Advertisements
Question
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Solution
Here, `(sec theta + tan theta ) /( sec theta - tan theta)`
=`((sec theta + tan theta ) ( sec theta + tan theta))/(( sec theta - tan theta ) ( sec theta + tan theta ))`
=` ((sec theta + tan theta )^2) /( sec^2 theta - tan^2 theta)`
=`((sec theta + tan theta )^2)/1`
=`(sec theta + tan theta )^2`
Again , `(sec theta + tan theta )2`
=` sec^2 theta + tan^2 theta + 2 sec theta tan theta `
=` 1+ tan^2 theta + tan^2 theta + 2 sec theta tan theta`
=`1+2 tan^2 theta + 2 sec theta tan theta `
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If sin A = `1/2`, then the value of sec A is ______.