Advertisements
Advertisements
Question
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Solution
`tanA - cotA = sinA/cosA - cosA/sinA`
= `(sin^2A - cos^2A)/(sinAcosA)`
= `(1 - cos^2A - cos^2A)/(sinAcosA)` (`Q sin^2A = 1 - cos^2A`)
= `(1 - 2cos^2A)/(sinAcosA)`
APPEARS IN
RELATED QUESTIONS
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Define an identity.
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ