Advertisements
Advertisements
Question
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Solution
L.H.S = `sintheta/(1 + cos theta) + (1 + cos theta)/sintheta`
Taking the L.C.M of the denominators,
We get,
= `(sin^2theta + (1 + cos theta)^2)/((1 + cos theta)* sintheta)`
= `(sin^2theta + 1 + cos^2theta + 2costheta)/((1 + costheta) * sin theta)`
Since, sin2θ + cos2θ = 1
= `(1 + 1 + 2costheta)/((1 + costheta) * sin theta)`
= `(2 + 2 cos theta)/((1 + cos theta) * sin theta)`
= `(2(1 + cos theta))/((1 + cos theta) * sin theta)`
Since, `1/sin theta` = cosec θ
= `2/sin theta`
= 2 cosec θ
R.H.S
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
Eliminate θ if x = r cosθ and y = r sinθ.