Advertisements
Advertisements
Question
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
Solution
LHS = `cos theta/((1-tan theta))-sin^2theta/((cos theta-sintheta))`
=`cos theta/((1-sintheta/costheta)) -sin^2 theta/((cos theta-sin theta))`
=`cos^2 theta/((cos theta-sintheta))- sin^2 theta/((cos theta-sin theta))`
=`(cos^2 theta- sin ^2 theta)/((cos theta- sin theta))`
=`((costheta + sin theta)( cos theta-sin theta))/((cos theta - sin theta))`
=`(cos theta + sin theta)`
= RHS
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Write the value of cos1° cos 2°........cos180° .
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.