Advertisements
Advertisements
Question
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Options
9
7
5
3
Solution
7
Explanation;
(sin α + cos α)2 + (cos α + sec α)2
= sin2α + cosec2α + 2 sin α cosec α + cos2α + sec2α + 2 cos α sec α
= 1 + cosec2α + 2 + sec2α + 2
= 1 + cot2α + 1 + 2 + tan2α + 1 + 2
= 7 + tan2α + cot2α
k = 7
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
If `sec theta = x ,"write the value of tan" theta`.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Choose the correct alternative:
cot θ . tan θ = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3