Advertisements
Advertisements
Question
If 3 sin θ = 4 cos θ, then sec θ = ?
Solution
3 sin θ = 4cos θ .....[Given]
∴ `(sintheta)/(costheta) = 4/3`
∴ tan θ = `4/3`
We know that,
1 + tan2θ = sec2θ
∴ `1 + (4/3)^2` = sec2θ
∴ `1 + 16/9` = sec2θ
∴ sec2θ = `(9 + 16)/9`
∴ sec2θ = `25/9`
∴ sec θ = `5/3` ......[Taking square root of both sides]
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1