Advertisements
Advertisements
Question
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Solution
LHS = `(1+ tan theta + cot theta )(sintheta - cos theta) `
=` sin theta + tan theta sin theta + cot theta sin theta - cos theta - tan theta cos theta - cot theta cos theta `
=`sin theta + tan theta sin theta + cos theta/sin theta xx sin theta - cos theta -sin theta/cos thetaxx cos theta - cot theta cos theta`
=`sin theta + tan theta sin theta + cos theta - cos theta - sin theta - cot theta cos theta`
=`tan theta sin theta - cot theta cos theta`
=`sin theta / cos theta xx 1/( cosec theta) - cos theta / sin theta xx 1/ sec theta`
=` 1/ (cosec theta) xx 1/ ( cosec theta ) xx sec theta - 1/ sec theta xx 1/ sec theta xx cosec theta`
=` sec theta / ( cosec^2 theta) - (cosec theta)/sec^2 theta`
= RHS
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Find A if tan 2A = cot (A-24°).
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
cos θ. sec θ = ?
Prove that sin4A – cos4A = 1 – 2cos2A
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.