Advertisements
Advertisements
Question
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Solution
L.H.S. = `cosA/(1-sinA)`
= `(cosA(1 + sinA))/((1 - sinA)(1 + sinA))`
= `(cosA(1 + sinA))/(1 - sin^2A)`
= `(cosA(1 + sinA))/(cos^2A)`
= `(1 + sinA)/cosA`
= `1/cosA + sinA/cosA`
= sec A + tan A = R.H.S.
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S