English

To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below. Activity: L.H.S = □ = □sinθ+sinθcosθ = cos2θ+sin2θ□ = 1sinθ⋅cosθ ......[cos2θ+sin2θ=□] = 1sinθ×1□ = □ = R.H.S - Geometry Mathematics 2

Advertisements
Advertisements

Question

To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S

Fill in the Blanks
Sum

Solution

L.H.S = cot θ + tan θ

= `costheta/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/(sintheta*costheta)`

= `1/(sintheta*costheta)`     ......[cos2θ + sin2θ = 1]

= `1/sintheta xx 1/costheta`

= cosecθ × secθ

= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (A)

RELATED QUESTIONS

Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


tan θ cosec2 θ – tan θ is equal to


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×